7th/8th Grade Mathematics

Poudre School District

Pacing Overview

Chapter 1: Integers

14 Days

7.NS.A.1, 7.NS.A.1a, 7.NS.A.1b, 7.NS.A.1c, 7.NS.A.1d, 7.NS.A.2, 7.NS.A.2a, 7.NS.A.2b, 7.NS.A.2c, 7.NS.A.3

Chapter 2: Rational Numbers

8 Days

7.NS.A.1a, 7.NS.A.1b, 7.NS.A.1c, 7.NS.A.1d*, 7.NS.A.2a, 7.NS.A.2b, 7.NS.A.2c*, 7.NS.A.2d, 7.NS.A.3*

Chapter 3: Expressions and Equations

14 Days

7.EE.A.1*, 7.EE.A.2*, 7.EE.B.4a, 8.EE.C.7a, 8.EE.C.7b

Collaboration Day September 29

Chapter 4: Inequalities

6 Days

7.EE.B.4b*

Chapter 5: Ratios and Proportions

12 Days

7.RP.A.1*, 7.RP.A.2a, 7.RP.A.2b, 7.RP.A.2c, 7.RP.A.2d*, 7.RP.A.3

Chapter 13: Graphing and Writing Linear Equations

12 Days

8.EE.B.5*, 8.EE.B.6*

7th/8th Grade Mathematics

Poudre School District

Chapter 6: Percents

12 Days

7.RP.A.3*, 7.EE.B.3*

Chapter 7: Constructions and Scale Drawings

12 Days

7.G.A.1^{*}, 7.G.A.2^{*}, 7.G.B.5^{*}

Chapter 12: Angles and Triangles

10 Days

8.G.A.5*

Chapter 8: Circles and Area

6 Days

<mark>7.G.B.4</mark>, <mark>7.G.B.6</mark>

Chapter 9: Surface Area and Volume & Chapter 15: Volume and Similar Solids

14 Days

<mark>7.G.A.3</mark>*, <mark>7.G.B.4</mark>*, <mark>7.G.B.6</mark>*, <mark>8.G.C.9</mark>*

Chapter 16: Exponents and Scientific Notation

10 Days

8.EE.A.1*, 8.EE.A.3*, 8.EE.A.4*

2017-2018

Chapter 14: Real Numbers and the Pythagorean Theorem

8 Days

8.NS.A.1*, 8.NS.A.2*, 8.EE.A.2*, 8.G.B.6*, 8.G.B.7*, 8.G.B.8*

Chapter 11: Transformations

14 Days

8.G.A.1*, 8.G.A.2*, 8.G.A.3*, 8.G.A.4*

Chapter 10: Probability and Statistics

12 Days

7.SP.A.1*, 7.SP.A.2*, 7.SP.B.3*, 7.SP.B.4*, 7.SP.C.5*, 7.SP.C.6*, 7.SP.C.7a, 7.SP.C.7b*, 7.SP.C.8a, 7.SP.C.8b, 7.SP.C.8c*

Review & Common Summative Assessment

* Teaching is complete. Standard can be assessed.
Major Work of the Grade.
Supporting Work of the Grade.
Additional Work of the Grade.

Chapter 1: Integers

14 Days

7.NS.A.1, 7.NS.A.1a, 7.NS.A.1b, 7.NS.A.1c, 7.NS.A.1d, 7.NS.A.2, 7.NS.A.2a, 7.NS.A.2b, 7.NS.A.2c, 7.NS.A.3

	Chapter Summary				
Section	Title	Level of Learning	Standard(s)		ing ery other)
	Scavenger Hunt/ Chapter Opener			1 day	
1.1	Integers and Absolute Value <i>Activities 1, 2 & 3</i> <i>Examples 3 & 4</i>	Preparing for	7.NS.A.1, 7.NS.A.2, 7.NS.A.3	1 day	1 day
1.2	Adding Integers Inductive Reasoning, Example 3	Learning	7.NS.A.1a, 7.NS.A.1b, 7.NS.A.1d, 7.NS.A.3	0.5 day	
1.3	Subtracting Integers Inductive Reasoning, Example 3	Learning	7.NS.A.1c, 7.NS.A.1d, 7.NS.A.3	0.5 day	1 day
1.4	Multiplying Integers Inductive Reasoning, Examples 1, 2 & 3	Learning	7.NS.A.2a, 7.NS.A.2c, 7.NS.A.3	0.5 day	1 day
1.5	Dividing Integers Examples 3 & 4	Learning	7.NS.A.2b, 7.NS.A.3	0.5 day	-

Total: 4 days

Additional Activities/Resources		
Name	Location	

	Vocabulary	
absolute value	additive inverse	additive inverse property
integers	opposites	

	Standards
7.NS.A.1	Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.A.1a	Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.
7.NS.A.1b	Understand $p + q$ as the number located a distance $ q $ from p , in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
7.NS.A.1c	Understand subtraction of rational numbers as adding the additive inverse, $p - q = p + (-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
7.NS.A.1d	Apply properties of operations as strategies to add and subtract rational numbers.
7.NS.A.2	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.A.2a	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
7.NS.A.2b	Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p/q) = (-p)/q = p/(-q)$. Interpret quotients of rational numbers by describing real-world contexts.
7.NS.A.2c	Apply properties of operations as strategies to multiply and divide rational numbers.
7.NS.A.3	Solve real-world and mathematical problems involving the four operations with rational numbers.

Chapter 2: Rational Numbers

8 Days

7.NS.A.1a, 7.NS.A.1b, 7.NS.A.1c, 7.NS.A.1d*, 7.NS.A.2a, 7.NS.A.2b, 7.NS.A.2c*, 7.NS.A.2d, 7.NS.A.3*

	Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing (every/every other)	
	Chapter Opening			0.5 day	
2.1	Rational Numbers Activity 1 Example 1 & 2	Learning	7.NS.A.2b, 7.NS.A.2d	0.5 day	
2.2	Adding Rational Numbers <i>Activity 3</i> <i>Example 1, 2 & 3</i>	Learning	7.NS.A.1a, 7.NS.A.1b, 7.NS.A.1d, 7.NS.A.3	0.5 day	1 day
2.3	Subtracting Rational Numbers <i>Example 1, 2 & 3</i>	Learning	7.NS.A.1c, 7.NS.A.1d*, 7.NS.A.3	0.5 day	
2.4	Multiplying and Dividing Rational Numbers <i>Activity 3</i> <i>Example 1, 2, 3 & 4</i>	Learning	7.NS.A.2a, 7.NS.A.2b, 7.NS.A.2c*, 7.NS.A.3*	1 day	1 day

Total: 3 days

Additional Activities/Resources		
Name	Location	

	Vocabulary	
rational number	repeating decimals	terminating decimal

	Standards
7.NS.A.1a	Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.
7.NS.A.1b	Understand $p + q$ as the number located a distance $ q $ from p , in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
7.NS.A.1c	Understand subtraction of rational numbers as adding the additive inverse, $p - q = p + (-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
7.NS.A.1d*	Apply properties of operations as strategies to add and subtract rational numbers.
7.NS.A.2a	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
7.NS.A.2b	Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p/q) = (-p)/q = p/(-q)$. Interpret quotients of rational numbers by describing real-world contexts.
7.NS.A.2c*	Apply properties of operations as strategies to multiply and divide rational numbers.
7.NS.A.2d	Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in os or eventually repeats.
7.NS.A.3*	Solve real-world and mathematical problems involving the four operations with rational numbers.

Chapter 3: Expressions and Equations

14 Days

7.EE.A.1*, 7.EE.A.2*, 7.EE.B.4a, 8.EE.C.7a, 8.EE.C.7b

	Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing (every/every ot	
	Chapter Opening			1 day	
3.1	Algebraic Expressions <i>Example 1, 2, 3 & 4</i>	Learning	7.EE.A.1, 7.EE.A.2	0.5 day	
3.2	Adding and Subtracting Linear Expressions <i>Activity 2 & 3</i> <i>Example 2, 3 & 4</i>	Learning	7.EE.A.1*, 7.EE.A.2*	1 day	1 day
	Extension 3.2 <i>Example 1, 2 & 3</i>			0.5 day	
3.3	Solving Equations Using Addition or Subtraction Activity 1 & 2 Example 1, 2 & 3	Learning	7.EE.B.4a	1 day	1 day
3.4	Solving Equations Using Multiplication or Division Activity 1 & 3 Example 1 & 2	Learning	7.EE.B.4a	1 day	
3.5	Solving Two-Step Equations Activity 1, 2 & 3 Example 1, 2, 3 & 4	Learning	7.EE.B.4a	1 day	1 day
Topic 1	Solving Multi-Step Equations <i>Example 1, 2, 3 & 4</i>	Learning	8.EE.C.7a, 8.EE.C.7b	1 day	1 day
Topic 2	Solving Equations with Variables on Both Sides <i>Ex. 1, 2, 5, 3, 4 & 6</i>	Learning	8.EE.C.7a, 8.EE.C.7b	2 days	1 day

Total: 9 days

Additional Activities/Resources		
Name	Location	

Vocabulary				
addition property of equality	division property of equality	equivalent equations		
factoring an expression	like terms	linear expression		
multiplication property of equality	simplest form (of an algebraic expression)	subtraction property of equality		

	Standards
7.EE.A.1*	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
7.EE.A.2*	Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. <i>For example, a</i> + 0.05 <i>a</i> = 1.05 <i>a means that "increase by 5%" is the same as "multiply by 1.05."</i>
7.EE.B.4a	Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p , q , and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. <i>For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?</i>
8.EE.C.7a	Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are different numbers).
8.EE.C.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

Chapter 4: Inequalities

6 Days

7.EE.B.4b*

Chapter Summary					
Section	Title	Level of Learning	Standard(s)	Pacing (every/every other)	
	Chapter Opening			1 day	
4.1	Writing and Graphing Inequalities Activity 1 Example 1 & 2 Activity 3 Example 3	Preparing for	7.EE.B.4b	1 day	
4.2	Solving Inequalities Using Addition or Subtraction Activity 1 & 2 Example 1, 2 & 3	Learning	7.EE.B.4b	1 day	1 day
4.3	Solving Inequalities Using Multiplication or Division Activity 1 & 3 Example 1, 3, 2 & 4	Learning	7.EE.B.4b	1 day	
4.4	Solving Two-Step Inequalities Activity 1 & 2 Example 1 & 2	Learning	7.EE.B.4b*	1 day	1 day

Total: 5 days

Additional Activities/Resources			
Name Location			

	Vocabulary				
addition property of inequality	division property of inequality	graph of an inequality			
inequality	multiplication property of inequality	solution of an inequality			
solution set	subtraction property of inequality				

	Standards
7.EE.B.4b*	Solve word problems leading to inequalities of the form $px + q > r$ or $px + q < r$, where p , q , and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. <i>For example: As a</i> <i>salesperson, you are paid \$50 per week plus \$3 per sale. This week you want</i> <i>your pay to be at least \$100. Write an inequality for the number of sales you</i> <i>need to make, and describe the solutions.</i>

Chapter 5: Ratios and Proportions

12 Days

7.RP.A.1*, 7.RP.A.2a, 7.RP.A.2b, 7.RP.A.2c, 7.RP.A.2d*, 7.RP.A.3

	Chapter Summary					
Section	Title	Level of Learning	Standard(s)		cing ery other)	
	Chapter Opening			1 day		
5.1	Ratios and Rates Activity 1, Example 1 Activity 2 Example 3 & 4 Activity 4	Learning	7.RP.A.1*, 7.RP.A.3	1 day		
5.2	Proportions Activity 1 & 3 Example 1, 2 & 3	Learning	7.RP.A.2a, 7.RP.A.2b, 7.RP.A.2d	1 day		
5.3	Writing Proportions Activity 3 Example 1, 2, & 3	Learning	7.RP.A.2c, 7.RP.A.3	1 day	2 days	
5.4	Solving Proportions Activity 1 Example 1, 2 & 3	Learning	7.RP.A.2b, 7.RP.A.2c	1 day		
5.2	Extension 5.2 Example 1 & 2			1 day		
5.5	Slope Activity 1 & 2 Example 1 & 2	Learning	7.RP.A.2b	1 day	2 days	
5.6	Direct Variation <i>Example 1, 2 & 3</i>	Learning	7.RP.A.2a, 7.RP.A.2b, 7.RP.A.2c, 7.RP.A.2d*	1 day		

Total: 8 days

Additional Activities/Resources				
Name Location				

Vocabulary				
complex fraction	constant of proportionality	cross products		
cross products property	direct variation	proportion		
proportional	rate	ratio		
slope	unit rate			

	Standards
7.RP.A.1*	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1/2$ mile in each $1/4$ hour, compute the unit rate as the complex fraction $1/2/1/4$ miles per hour, equivalently 2 miles per hour.
7.RP.A.2a	Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
7.RP.A.2b	Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
7.RP.A.2c	Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t = pn$.
7.RP.A.2d*	Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0, 0)$ and $(1, r)$ where r is the unit rate.
7.RP.A.3	Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.

Chapter 13: Graphing and Writing Linear Equations

12 Days

8.EE.B.5*, 8.EE.B.6*

	Chapter Summary					
Section	Title	Level of Learning	Standard(s)	Pacing (every/every other)		
	Chapter Opening			1 day		
10.0	Slope of a Line Activity 1 Example 1, 2, 3 & 4	Learning	8.EE.B.5	1 day		
13.2	Extension 13.2 Activity 3 Example 1 & 2			1 day	1 day	
13.3	Graphing Proportional Relationships Activity 1 & 2 Example 1, 2 & 3	Learning	8.EE.B.5*, 8.EE.B.6	1 day		
13.1	Graphing Linear Equations Activity 1 & 2 Example 1, 2 & 3	Preparing for	8.EE.B.5	1 day		
13.4	Graphing Linear Equations in Slope- Intercept Form Activity 1 Example 1, 2 & 3	Learning	8.EE.B.6	1 day	1 day	

Chapter Summary (continued)					
Section	Title	Level of Learning	Standard(s)	Pacing (every/every other)	
13.5	Graphing Linear Equations in Standard Form <i>Activity 1</i> <i>Example 1, 2 & 3</i>	Applying	8.EE.B.6	1 day	
13.6	Writing Equations in Slope-Intercept Form Activity 1 & 3 Example 2 & 3 Activity 2	Applying	8.EE.B.6	1 day	2 days
13.7	Writing Equations in Point-Slope Form Activity 1 & 2 Example 2 Activity 3 Example 3	Applying	8.EE.B.6*	1 day	

Total: 9 days

Additional Activities/Resources				
Name Location				

Vocabulary					
linear equation	point-slope form	rise			
run	slope	slope-intercept form			
solution of a linear equation	standard form	x-intercept			
y-intercept					

	Standards				
8.EE.B.5*	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.				
8.EE.B.6*	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y = mx$ for a line through the origin and the equation $y = mx + b$ for a line intercepting the vertical axis at <i>b</i> .				

Chapter 6: Percents

12 Days

7.RP.A.3*, 7.EE.B.3*

	Chapter Summary					
Section	Title	Level of Learning	Standard(s)	Pacing (every/every oth		
	Chapter Opening			1 day		
6.1	Percents and Decimals Activity 1, 2 & 3 Example 1, 2 & 4	Learning	7.EE.B.3	1 day		
6.2	Comparing and Ordering Fractions, Decimals and Percents <i>Activity 1 & 2</i> <i>Example 3</i>	Learning	7.EE.B.3	1 day		
6.3	The Percent Proportion Activity 1, 2 & 3 Example 1, 2, 3 & 4	Learning	7.RP.A.3	1 day		
6.4	The Percent Equation Activity 3 & 4 Example 1, 2, 3 & 4	Learning	7.RP.A.3, 7.EE.B.3*	1 day	1 day	
6.5	Percents of Increase and Decrease Activity 1 & 2 Example 2 & 3	Learning	7.RP.A.3	1 day	o dovo	
6.6	Discounts and Markups Activity 1, 2 & 3 Example 1, 2 & 3	Learning	7.RP.A.3	1 day	2 days	
6.7	Simple Interest Activity 1 & 3 Example 1, 2, 3 & 4	Learning	7.RP.A.3*	1 day	1 day	

Total: 8 days

Additional Activities/Resources					
Name Location					

Vocabulary				
discount	interest	markup		
percent of change	percent of decrease	percent error		
percent increase	principal	simple interest		

	Standards				
7.RP.A.3*	Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.				
7.EE.B.3*	Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. <i>For example: If a woman making \$25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or \$2.50, for a new salary of \$27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.</i>				

7th/8th Grade Mathematics

Poudre School District

Chapter 7: Constructions and Scale Drawings

12 Days

7.G.A.1*, 7.G.A.2*, 7.G.B.5*

	Chapter Summary					
Section	Title	Level of Learning	Standard(s)	Pacing (every/every other)		
	Chapter Opening			1 day		
7.1	Adjacent and Vertical Angles <i>Activity 2 & 3</i> <i>Example 1, 2 & 3</i>	Learning	7.G.B.5	1 day		
7.2	Complementary and Supplementary Angles Activity 1 & 2 Example 1, 2 & 3	Learning	7.G.B.5	1 day	1 day	
7.3	Triangles Activity 1, 2 & 4 Example 1, 2 & 3	Learning	<mark>7.G.A.2</mark> , <mark>7.G.B.5</mark> *	2 days	1 day	
	Extension 7.3 Example 1 & 2			1 day		
7.4	Quadrilaterals Activity 1, 2 & 3 Example 1 Activity 4 Example 2 & 3	Learning	7.G.A.2*	2 days	1 day	
7.5	Scale Drawings Activity 1 & 2 Example 1, 2, 3 & 4	Learning	<mark>7.G.A.1</mark> *	1 day	1 day	

Total: 9 days

Additional Activities/Resources				
Name Location				

Vocabulary					
adjacent angles	complementary angles	congruent angles			
congruent sides	kite	scale			
scale drawing	scale factor (of a scale drawing)	scale model			
supplementary angles	vertical angles				

	Standards					
<mark>7.G.A.1</mark> *	Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.					
<mark>7.G.A.2</mark> *	Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.					
<mark>7.G.B.5</mark> *	Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.					

Chapter 12: Angles and Triangles

10 Days

8.G.A.5*

	Chapter Summary					
Section	Title	Level of Learning	Standard(s)	Pacing (every/every oth		
	Chapter Opening			1 day		
12.1	Parallel Lines and Transversals Activity 1 & 2 Example 1, 2 & 4	Learning	8.G.A.5	1 day	1 day	
12.3	Angles of Polygons Activity 1 & 2 Example 2, 3 & 4	Applying	8.G.A.5	1 day		
12.4	Using Similar Triangles Activity 1 & 2 Example 1	Learning	8.G.A.5*	1 day	1 day	
12.4	Using Similar Triangles <i>Activity 3</i> <i>Example 2</i>	Learning	8.G.A.5*	2 day	1 day	

Total: 6 days

Additional Activities/Resources					
Name Location					

	Vocabulary	
concave polygon	convex polygon	exterior angles
exterior angles of a polygon	indirect measurement	interior angles
interior angles of a polygon	regular polygon	transversal

	Standards
8.G.A.5*	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. <i>For</i> <i>example, arrange three copies of the same triangle so that the sum of the three</i> <i>angles appears to form a line, and give an argument in terms of transversals</i> <i>why this is so.</i>

Chapter 8: Circles and Area

6 Days

<mark>7.G.B.4</mark>, <mark>7.G.B.6</mark>

Chapter Summary					
Section	Title	Level of Learning	Standard(c)	Pacing (every/every other)	
	Chapter Opening			1 day	
8.1	Circles and Circumference Activity 1 & 2 Example 1, 2, 3 & 4	Learning	7.G.B.4	1 day	, dan
8.2	Perimeters of Composite Figures Activity 2 & 3 Example 1, 2 & 3	Applying	<mark>7.G.B.4</mark>	1 day	1 day
8.3	Area of Circles <i>Activity 2</i> <i>Example 1, 2 & 3</i>	Learning	<mark>7.G.B.4</mark>	1 day	
8.4	Areas of Composite Figures Activity 1 Example 1, 2, 3 & 4	Learning	<mark>7.G.B.6</mark>	1 day	1 day

Total: 5 days

Additional Activities/Resources		
Name Location		

	Vocabulary	
center (of a circle)	circle	circumference
composite figure	diameter (of a circle)	pi
radius (of a circle)	semicircle	

	Standards			
<mark>7.G.B.4</mark>	Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.			
<mark>7.G.B.6</mark>	Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.			

Chapter 9: Surface Area and Volume & Chapter 15: Volume and Similar Solids

14 Days

<mark>7.G.A.3</mark>*, <mark>7.G.B.4</mark>*, <mark>7.G.B.6</mark>*, <mark>8.G.C.9</mark>*

	Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing (every/every other	
	Chapter Opening				
9.1	Surface Area of Prisms <i>Activity 3</i> <i>Example 1, 2, 3 & 4</i>	Learning	7.G.B.6	1 day	1 dou
9.3	Surface Area of Cylinders <i>Activity 1 & 2</i> <i>Example 1, 2 & 3</i>	Applying	<mark>7.G.B.4</mark> *	1 day	1 day
9.2	Surface Area of Pyramids <i>Activity 1, 2 & 3</i> <i>Example 1, 2 & 3</i>	Learning	7.G.B.6	2 days	1 day
9.5	Extension 9.5 <i>Example 1 & 2</i>			1 day	
9.4	Volumes of Prisms Activity 1, 2 & 3 Example 1, 2 & 3 Activity 4	Learning	7.G.B.6	1 day	1 day
15.1	Volumes of Cylinders Activity 1 & 2 Example 1, 2, 3 & 4	Learning	8.G.C.9	1 day	
9.5	Volumes of Pyramids <i>Activity 1</i> <i>Example 1, 2 & 3</i>	Learning	<mark>7.G.A.3</mark> *, <mark>7.G.B.6</mark> *	1 day	1 day
15.2	Volumes of Cones Activity 1 Example 1, 2 & 3 Activity 3 & 2	Learning	<mark>8.G.C.9</mark>	1 day	

	Chapter Summary (continued)					
Section	Title	Level of Learning	Standard(s)		ring ery other)	
15.3	Volumes of Spheres Activity 1 & 2 Example 1, 2 & 3	Learning	8.G.C.9	1 day		
15.4	Surface Areas and Volumes of Similar Solids <i>Example 1</i> <i>Activity 1 & 2</i> <i>Example 2, 3 & 4</i>	Applying	<mark>8.G.C.9</mark> *	2 days	1 day	

Total: 12 days

Additional Activities/Resources		
Name Location		

Vocabulary			
cross section	lateral surface area (of a prism)	regular pyramid	
slant height (of a pyramid) sphere	hemisphere	similar solids	

	Standards			
<mark>7.G.A.3</mark> *	Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.			
<mark>7.G.B.4</mark> *	Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.			
<mark>7.G.B.6</mark> *	Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.			
<mark>8.G.C.9</mark> *	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.			

Chapter 16: Exponents and Scientific Notation

10 Days

8.EE.A.1*, 8.EE.A.3*, 8.EE.A.4*

	Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing (every/every other)	
	Chapter Opening				
16.1	Exponents Activity 1 & 3 Example 1, 2, 3 & 4	Learning	8.EE.A.1	1 day	1 day
16.2	Product of Powers Property Activity 1, 2 & 3 Example 1, 2, 3 & 4	Learning	8.EE.A.1	1 day	T duy
16.3	Quotient of Powers Property	Learning	8.EE.A.1	1 day	d door
16.4	Zero and Negative Exponents	Learning	8.EE.A.1*	1 day	1 day
16.5	Reading Scientific Notation	Learning	8.EE.A.3, 8.EE.A.4	1 dan	
16.6	Wring Scientific Notation	Learning	8.EE.A.3, 8.EE.A.4	- 1 day	1 day
16.7	Operations in Scientific Notation	Learning	8.EE.A.3*, 8.EE.A.4*	1 day	

Total: 6 days

Additional Activities/Resources				
Name Location				

Vocabulary					
base (of a power)	exponent	power			
power of a power property	power of a product property	product of powers property			
quotient of powers property	scientific notation				

	Standards				
8.EE.A.1*	Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^2 \times 3^{-5} = 3^{-3} = 1/3^3 = 1/27$.				
8.EE.A.3*	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. <i>For example, estimate the population of the United States as 3 times 10⁸ and the population of the world as 7 times 10⁹, and determine that the world population is more than 20 times larger.</i>				
8.EE.A.4*	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.				

Chapter 14: Real Numbers and the Pythagorean Theorem

8 Days

8.NS.A.1*, 8.NS.A.2*, 8.EE.A.2*, 8.G.B.6*, 8.G.B.7*, 8.G.B.8*

	Chapter Summary						
Section	Title	Level of Learning	Standard(s)	Pacing (every/every other			
	Chapter Opening			1 day			
14.1	Finding Square Roots Activity 1 & 2 Example 1, 2, 3 & 4	Learning	8.EE.A.2	1 day	1 day		
14.2	Finding Cube Roots Activity 1 & 2 Example 1, 2 & 3	Learning	8.EE.A.2	1 day			
14.4	Approximating Square Roots <i>Activity 1</i> <i>Example 1, 2, 3 & 4</i>	Learning	8.NS.A.1*, 8.NS.A.2*, 8.EE.A.2	1 day	1 day		
	Extension 14.4 <i>Example 1, 2 & 3</i>			1 day	1 day		

Total: 5 days

Additional Activities/Resources				
Name Location				

Vocabulary				
cube root	distance formula	hypothenuse		
irrational number	legs	perfect cube		
perfect square	Pythagorean Theorem	radical sign		
radicand	real numbers	square root		
theorem				

	Standards
8.NS.A.1*	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
8.NS.A.2*	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^2). For example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
8.EE.A.2*	Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.
8.G.B.6*	Explain a proof of the Pythagorean Theorem and its converse.
8.G.B.7*	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
8.G.B.8*	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Chapter 11: Transformations

14 Days

8.G.A.1*, 8.G.A.2*, 8.G.A.3*, 8.G.A.4*

	Chapter Summary						
Section	Section Title		Standard(s)	Pacing (every/every other)			
	Chapter Opening			1 day			
11.1	Congruent Figures Activity 1 & 2 Example 1, 2 & 3	Preparing for	8.G.A.2	1 day			
11.5	Similar Figures Activity 1 & 2 Example 1, 2 & 3	Preparing for	8.G.A.4	1 day	2 days		
11.6	Perimeters and Areas of Similar Figures Activity 1, 2 & 3 Example 1, 2 & 3	Preparing for	8.G.A.4	1 day			
11.2	Translations Example 1 Activity 1, 2 & 4 Example 2 & 3	Learning	8.G.A.1, 8.G.A.2, 8.G.A.3	1 day	2 days		
11.3	Reflections Example 1 Activity 1, 2 & 4 Example 3 & 2	Learning	8.G.A.1, 8.G.A.2, 8.G.A.3	1 day			
11.4	Rotations <i>Ex. 1, 2, 3, 4 & 5</i>	Learning	8.G.A.1*, 8.G.A.2*, 8.G.A.3	1 day			
11.7	Dilations Activity 1 Example 1, 2 & 3 Activity 3 Example 4 & 5	Learning	8.G.A.3*, 8.G.A.4*	2 days			

Total: 9 days

Additional Activities/Resources				
Name Location				

Vocabulary					
angle of rotation	center of dilation	center of rotation			
congruent figures	corresponding angles	corresponding sides			
dilation	image	line of reflection			
reflection	rotation	scale factor (of a dilation)			
similar figures	transformation	translation			

	Standards
8.G.A.1*	 Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length. Angles are taken to angles of the same measure. Parallel lines are taken to parallel lines.
8.G.A.2*	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
8.G.A.3*	Describe the effect of dilations, translations, rotations, and reflections on two- dimensional figures using coordinates.
8.G.A.4*	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.

Chapter 10: Probability and Statistics

12 Days

7.SP.A.1*, 7.SP.A.2*, 7.SP.B.3*, 7.SP.B.4*, 7.SP.C.5*, 7.SP.C.6*, 7.SP.C.7a, 7.SP.C.7b*, 7.SP.C.8a, 7.SP.C.8b, 7.SP.C.8c*

Chapter Summary						
Section	Title	Level of Learning	Standard(s)	Pacing (every/every other)		
	Chapter Opening			1 day		
10.1	Outcomes and Events Activity 1 & 2 Example 1, 2, 3 & 4	Preparing for	7.SP.C.5	1 day	1 day	
10.2	Probability Activity 1, 2 & 3 Example 1, 2 & 3	Learning	7.SP.C.5, 7.SP.C.7a	1 day		
10.3	Experimental and Theoretical Probability <i>Activity 1 & 2</i> <i>Example 1, 2 & 5</i>	Learning	7.SP.C.5*, 7.SP.C.6*, 7.SP.C.7a, 7.SP.C.7b*	1 day	1 day	
10.4	Compound Events Activity 1 Example 1, 2, 4 & 5 Activity 2	Learning	7.SP.C.8a, 7.SP.C.8b	1 day		
10.5	Independent and Dependent Events Activity 1 & 2 Example 1, 2 & 3	Learning	7.SP.C.8a, 7.SP.C.8b, 7.SP.C.8c*	1 day	1 day	
	Extension 10.5 <i>Example 1, 2 & 3</i>			1 day		

Chapter Summary (continued)						
Section	Title	Level of Learning	Standard(s)	Pacing (every/every other)		
10.6	Samples and Populations Activity 1, 2 & 3 Example 1, 2 & 3	Learning	7.SP.A.1*, 7.SP.A.2*	1 day		
	Extension 10.6 Activity 1, 2 & 3			1 day	1 day	
10.7	Comparing Populations <i>Activity 1</i> <i>Example 1 & 2</i>	Learning	7.SP.B.3 [*] , 7.SP.B.4 [*]	1 day		

Total: 10 days

Additional Activities/Resources	
Name	Location

Vocabulary		
biased sample	compound event	dependent events
event	experiment	experimental probability
favorable outcomes	Fundamental Counting Principle	independent events
outcomes	population	probability
relative frequency	sample	sample space
simulation	theoretical probability	unbiased sample

	Standards
7.SP.A.1*	Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.
7.SP.A.2*	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.
<mark>7.SP.B.3</mark> *	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. <i>For example,</i> <i>the mean height of players on the basketball team is 10 cm greater than the</i> <i>mean height of players on the soccer team, about twice the variability (mean</i> <i>absolute deviation) on either team; on a dot plot, the separation between the</i> <i>two distributions of heights is noticeable.</i>
<mark>7.SP.B.4</mark> *	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh- grade science book are generally longer than the words in a chapter of a fourth-grade science book.

Standards (continued)		
7.SP.C.5*	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	
7.SP.C.6*	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. <i>For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.</i>	
7.SP.C.7a	Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. <i>For example,</i> <i>if a student is selected at random from a class, find the probability that Jane</i> <i>will be selected and the probability that a girl will be selected.</i>	
7.SP.C.7b*	Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?	
7.SP.C.8a	Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.	
7.SP.C.8b	Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.	
7.SP.C.8c*	Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?	