Poudre School District Pacing Overview

Semester One

Chapter 1: Solving Linear Equations

5-6 days

HS.N.Q.A.1, HS.A.CED.A.1, HS.A.CED.A.4, HS.A.REI.A.1, HS.A.REI.B.3

Chapter 2: Solving Linear Inequalities

6-7 days

HS.A.CED.A.1, HS.A.REI.B.3

Chapter 3: Graphing Linear Functions

5-6 days

HS.A.CED.A.2, HS.A.REI.D.10, HS.F.IF.B.4, HS.F.IF.B.5, HS.F.IF.C.7a, HS.F.LE.A.1b, HS.F.LE.B.5

Chapter 4: Writing Linear Functions

8-9 days

HS.A.CED.A.2, HS.F.BF.A.1a, HS.F.LE.A.1b, HS.F.LE.A.2, HS.F.LE.B.5, HS.S.ID.B.6a, HS.S.ID.B.6b, HS.S.ID.B.6c, HS.S.ID.C.7, HS.S.ID.C.8, HS.S.ID.C.9

Chapter 5: Solving Systems of Linear Equations

9-10 days

HS.A.CED.A.3, HS.A.REI.C.5, HS.A.REI.C.6, HS.A.REI.D.11, HS.A.REI.D.12

2017-2018 1 | Page

Poudre School District Pacing Overview

Semester Two

Chapter 3: Graphing Linear Functions

3 days

HS.A.CED.A.2, HS.F.IF.A.1, HS.F.IF.A.2, HS.F.IF.C.7a, HS.F.IF.C.9

Chapter 6: Exponential Functions and Sequences

9-10 days

HS.N.RN.A.1, HS.N.RN.A.2, HS.A.SSE.B.3c, HS.A.CED.A.1, HS.A.CED.A.2, HS.A.REI.A.1, HS.A.REI.D.11, HS.F.IF.B.4, HS.F.IF.C.7e, HS.F.IF.C.8b, HS.F.IF.C.9, HS.F.BF.A.1a, HS.F.BF.B.3, HS.F.LE.A.1a, HS.F.LE.A.1c, HS.F.LE.A.2

Chapter 7: Polynomial Equations and Factoring

9-10 days

HS.A.SSE.A.2, HS.A.SSE.B.3a, HS.A.APR.A.1, HS.A.APR.B.3, HS.A.REI.B.4b

Chapter 8: Graphing Quadratic Functions

8-9 days

HS.A.SSE.B.3a, HS.A.APR.B.3, HS.A.CED.A.2, HS.F.IF.B.4, HS.F.IF.B.6, HS.F.IF.C.7a, HS.F.IF.C.8a, HS.F.IF.C.9, HS.F.BF.A.1a, HS.F.BF.B.3, HS.F.LE.A.3

Chapter 9: Solving Quadratic Equations

7-8 days

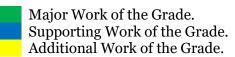
HS.A.SSE.B.3b, HS.A.CED.A.1, HS.A.CED.A.4, HS.A.REI.B.4a, HS.A.REI.B.4b, HS.A.REI.C.7, HS.A.REI.D.11, HS.F.IF.C.7a, HS.F.IF.C.8a

2017-2018 2 | Page

Poudre School District

Chapter 10: Radical Functions and Equations

Time Permitting


HS.A.CED.A.1, HS.A.CED.A.2, HS.F.IF.B.4, HS.F.IF.B.6, HS.F.IF.C.7b, HS.F.IF.C.9, HS.F.BF.4a

Chapter 11: Data Analysis and Displays

Time Permitting

HS.S.ID.A.1, HS.S.ID.A.2, HS.S.ID.A.3, HS.S.ID.B.5

Review & Common Summative Assessment

2017-2018 3 | Page

Poudre School District

Chapter 1: Solving Linear Equations

5-6 days

HS.N.Q.A.1, HS.A.CED.A.1, HS.A.CED.A.4, HS.A.REI.A.1, HS.A.REI.B.3

Chapter Summary				
Section	Title Level of Learning Standard(s)		Pacing	
	Chapter Opener/Mathematical Practices			o.5 day
1.1	Solving Simple Equations	Learning	HS.A.CED.A.1, HS.A.REI.A.1, HS.A.REI.B.3	o.5 day
1.2	Solving Multi-Step Equations	Learning	HS.N.Q.A.1, HS.A.CED.A.1, HS.A.REI.B.3	o.5 day
1.3	Solving Equations with Variables on Both Sides	Learning	HS.A.CED.A.1, HS.A.REI.B.3	1 day
1.5	Rewriting Equations and Formulas	Learning	HS.A.CED.A.4	o.5 day

Total: 3 days

Note: Additional days reserved for review and assessment.

2017-2018 4 | P a g e

Additional Activities/Resources		
Name Location		
Magic of Mathematics	Big Ideas Math: Performance Tasks: Assessment Book Performance Task	

Vocabulary				
conjecture	equation	equivalent equations		
formula	identity	inverse operations		
linear equation in one variable	literal equation	rule		
solution of an equation	theorem			

	Standards
HS.N.Q.A.1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
HS.A.CED.A.1	Create equations and inequalities in one variable and use them to solve problems. <i>Include equations arising from linear and quadratic functions, and simple rational and exponential functions.</i>
HS.A.CED.A.4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V = IR$ to highlight resistance R .
HS.A.REI.A.1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
HS.A.REI.B.3	Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

2017-2018 **5** | P a g e

Poudre School District

Chapter 2: Solving Linear Inequalities

6-7 days

HS.A.CED.A.1, HS.A.REI.B.3

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
	Chapter Opener/Mathematical Practices			o.5 day
2.1	Writing and Graphing Inequalities	Learning	HS.A.CED.A.1	o.5 day
2.2	Solving Inequalities Using Addition or Subtraction	Learning	HS.A.CED.A.1, HS.A.REI.B.3	o.5 day
2.3	Solving Inequalities Using Multiplication or Division	Learning	HS.A.CED.A.1, HS.A.REI.B.3	o.5 day
2.4	Solving Multi-Step Inequalities	Learning	HS.A.CED.A.1, HS.A.REI.B.3	1 day
2.5	Solving Compound Inequalities	Learning	HS.A.CED.A.1, HS.A.REI.B.3	1 day

Total: 4 days

Note: Additional days reserved for review and assessment.

6 | P a g e

Additional Activities/Resources		
Name	Location	
Grading Calculations	Big Ideas Math: Performance Tasks: Assessment Book Performance Task	

	Vocabulary	
compound inequality	equivalent inequalities	graph of an inequality
inequality	solution of an inequality	solution set

Standards		
HS.A.CED.A.1	Create equations and inequalities in one variable and use them to solve problems. <i>Include equations arising from linear and quadratic functions, and simple rational and exponential functions.</i>	
HS.A.REI.B.3	Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	

2017-2018 7 | Page

Poudre School District

Chapter 3: Graphing Linear Functions

5-6 days

HS.A.CED.A.2, HS.A.REI.D.10, HS.F.IF.B.4, HS.F.IF.B.5, HS.F.IF.C.7a, HS.F.LE.A.1b, HS.F.LE.B.5

Chapter Summary				
Section	n Title Level of Learning Pa			Pacing
	Chapter Opener/Mathematical Practices			o.5 day
3.2	Linear Functions	Learning	HS.A.CED.A.2, HS.A.REI.D.10, HS.F.IF.B.5, HS.F.IF.C.7a, HS.F.LE.A.1b	o.5 day
3.4	Graphing Linear Equations in Standard Form	Learning	HS.A.CED.A.2, HS.F.IF.C.7a	1 day
3.5	Graphing Linear Equations in Slope- Intercept Form	Learning	HS.A.CED.A.2, HS.F.IF.B.4, HS.F.IF.C.7a, HS.F.LE.B.5	1 day

Total: 3 days

Note: Additional days reserved for review and assessment.

Additional Activities/Resources		
Name Location		
The Cost of a T-Shirt	Big Ideas Math: Performance Tasks: Assessment Book Performance Task	

Vocabulary				
constant function	continuous domain	discrete domain		
linear equation in two variables	linear function	nonlinear function		
rise	run	slope		
slope-intercept form	solution of a linear equation in two variables	standard form of a linear equation		
x-intercept	y-intercept			

	Standards
HS.A.CED.A.2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
HS.A.REI.D.10	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
HS.F.IF.B.4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

2017-2018 **9** | P a g e

	Standards (continued)			
HS.F.IF.B.5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.			
HS.F.IF.C.7a	Graph linear and quadratic functions and show intercepts, maxima, and minima.			
HS.F.LE.A.1b	Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.			
HS.F.LE.B.5	Interpret the parameters in a linear or exponential function in terms of a context.			

2017-2018 **10** | P a g e

Poudre School District

Chapter 4: Writing Linear Functions

8-9 days

HS.A.CED.A.2, HS.F.BF.A.1a, HS.F.LE.A.1b, HS.F.LE.A.2, HS.F.LE.B.5, HS.S.ID.B.6a, HS.S.ID.B.6b, HS.S.ID.B.6c, HS.S.ID.C.7, HS.S.ID.C.8, HS.S.ID.C.9

	Chapter Summary				
Section	ection Title Level of Learning Standard(s)		Pacing		
	Chapter Opener/Mathematical Practices			o.5 day	
4.1	Writing Equations in Slope-Intercept Form	Learning	HS.A.CED.A.2, HS.F.BF.A.1a, HS.F.LE.A.1b, HS.F.LE.A.2	1 day	
4.2	Writing Equations in Point-Slope Form	Learning	HS.A.CED.A.2, HS.F.BF.A.1a, HS.F.LE.A.1b, HS.F.LE.A.2	1 day	
4.3	Writing Equations of Parallel and Perpendicular Lines	Learning	HS.A.CED.A.2, HS.F.LE.A.2	o.5 day	
4.4	Scatter Plots and Lines of Fit	Learning	HS.F.LE.B.5, HS.S.ID.B.6a, HS.S.ID.B.6c, HS.S.ID.C.7	o.5 day	
4.5	Analyzing Lines of Fit	Learning	HS.F.LE.B.5, HS.S.ID.B.6a, HS.S.ID.B.6b, HS.S.ID.B.6c, HS.S.ID.C.7, HS.S.ID.C.8, HS.S.ID.C.9	2 day	

Total: 5.5 days

Note: Additional days reserved for review and assessment.

2017-2018 11 | P a g e

Additional Activities/Resources		
Name Location		

	Vocabulary	
causation	correlation	correlation coefficient
extrapolation	interpolation	line of best fit
line of fit	linear model	linear regression
parallel lines	perpendicular lines	point-slope form
residual	scatter plot	

	Standards			
HS.A.CED.A.2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.			
HS.F.BF.A.1a	Determine an explicit expression, a recursive process, or steps for calculation from a context.			
HS.F.LE.A.1b	Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.			
HS.F.LE.A.2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).			
HS.F.LE.B.5	Interpret the parameters in a linear or exponential function in terms of a context.			
HS.S.ID.B.6a	Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.			
HS.S.ID.B.6b	Informally assess the fit of a function by plotting and analyzing residuals.			
HS.S.ID.B.6c	Fit a linear function for a scatter plot that suggests a linear association.			
HS.S.ID.C.7	Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.			
HS.S.ID.C.8	Compute (using technology) and interpret the correlation coefficient of a linear fit.			
HS.S.ID.C.9	Distinguish between correlation and causation.			

2017-2018 **12** | P a g e

Poudre School District

Chapter 5: Solving Systems of Linear Equations

9-10 days

HS.A.CED.A.3, HS.A.REI.C.5, HS.A.REI.C.6, HS.A.REI.D.12

Chapter Summary						
Section	ection Title Level of Learning Standard(s)					
	Chapter Opener/Mathematical Practices			o.5 day		
5.1	Solving Systems of Linear Equations by Graphing	Learning	HS.A.CED.A.3, HS.A.REI.C.6	1 day		
5.2	Solving Systems of Linear Equations by Substitution	Learning	HS.A.CED.A.3, HS.A.REI.C.6	1 day		
5.3	Solving Systems of Linear Equations by Elimination	Learning	HS.A.CED.A.3, HS.A.REI.C.5, HS.A.REI.C.6	1.5 days		
5.4	Solving Special Systems of Linear Equations	Learning	HS.A.CED.A.3, HS.A.REI.C.6	0.5 day		
Supplement	Application of Systems of Linear Equations			2 days		
5.6	Solving Linear Inequalities in Two Variables	Learning	HS.A.CED.A.3, HS.A.REI.D.12	1 day		
5.7	Systems of Linear Inequalities	Learning	HS.A.CED.A.3, HS.A.REI.D.12	1.5 days		
Supplement	Applications of Systems of Inequalities			2 days		

Total: 11 days

Note: Additional days reserved for review and assessment.

2017-2018 13 | Page

Additional Activities/Resources		
Name Location		

Vocabulary				
graph of a linear inequality	graph of a system of linear inequalities	half-planes		
linear inequality in two variables	solution of a linear inequality in two variables	solution of a system of linear equations		
solution of a system of linear inequalities	system of linear equations	system of linear inequalities		

	Standards		
HS.A.CED.A.3	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.		
HS.A.REI.C.5	Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.		
HS.A.REI.C.6	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.		
HS.A.REI.D.12	Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.		

2017-2018 **14** | P a g e

Poudre School District

Chapter 3: Graphing Linear Functions

3 days

HS.A.CED.A.2, HS.F.IF.A.1, HS.F.IF.A.2, HS.F.IF.C.7a, HS.F.IF.C.9

Chapter Summary				
Section Title Level of Learning Standard(s)		Standard(s)	Pacing	
3.1	Functions	Learning	HS.F.IF.A.1	0.5 day
3.3	Function Notation	Learning	HS.A.CED.A.2, HS.F.IF.A.1, HS.F.IF.A.2, HS.F.IF.C.7a, HS.F.IF.C.9	1 day

Total: 1.5 days

Note: Additional days reserved for review and assessment.

2017-2018 15 | Page

Additional Activities/Resources			
Name Location			

	Vocabulary		
dependent variable	domain	function	
function notation	independent variable	range	
relation			

	Standards
HS.A.CED.A.2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
HS.F.IF.A.1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $g = f(x)$.
HS.F.IF.A.2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
HS.F.IF.C.7a	Graph linear and quadratic functions and show intercepts, maxima, and minima.
HS.F.IF.C.9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

2017-2018 **16** | Page

Poudre School District

Chapter 6: Exponential Functions and Sequences

9-10 days

HS.N.RN.A.1, HS.N.RN.A.2, HS.A.SSE.B.3c, HS.A.CED.A.1, HS.A.CED.A.2, HS.A.REI.A.1, HS.A.REI.D.11, HS.F.IF.B.4, HS.F.IF.C.7e, HS.F.IF.C.8b, HS.F.IF.C.9, HS.F.BF.A.1a, HS.F.BF.B.3, HS.F.LE.A.1a, HS.F.LE.A.1c, HS.F.LE.A.2

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
6.1	Properties of Exponents	Learning	HS.N.RN.A.2	1.5 days
6.2	Radicals and Rational Exponents	Learning	HS.N.RN.A.1, HS.N.RN.A.2	1.5 days
6.3	Exponential Functions	Learning	HS.A.CED.A.2, HS.F.IF.B.4, HS.F.IF.C.7e, HS.F.IF.C.9, HS.F.BF.A.1a, HS.F.BF.B.3, HS.F.LE.A.1a, HS.F.LE.A.2	1.5 days
6.4	Exponential Growth and Decay	Learning	HS.A.SSE.B.3c, HS.A.CED.A.2, HS.F.IF.C.7e, HS.F.IF.C.8b, HS.F.BF.A.1a, HS.F.LE.A.1c, HS.F.LE.A.2	1 day
6.5	Solving Exponential Equations	Learning	HS.A.CED.A.1, HS.A.REI.A.1, HS.A.REI.D.11	1.5 days

Total: 7 days

Note: Additional days reserved for review and assessment.

2017-2018 17 | Page

Additional Activities/Resources		
Name	Location	

Vocabulary			
common ratio	compound interest	explicit rule	
exponential decay	exponential decay function	exponential equation	
exponential function	exponential growth	exponential growth function	
geometric sequence	index of a radical	$n^{ m th}$ root of a	
radical	recursive rule		

	Standards
HS.N.RN.A.1	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5^{(1/3)3}$ to hold, so $(5^{1/3})^3$ must equal 5.
HS.N.RN.A.2	Rewrite expressions involving radicals and rational exponents using the properties of exponents.
HS.A.SSE.B.3c	Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15 ^t can be rewritten as $(1.15^{1/12})^{12t} \approx 1.012^{12t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.
HS.A.CED.A.1	Create equations and inequalities in one variable and use them to solve problems. <i>Include equations arising from linear and quadratic functions, and simple rational and exponential functions.</i>
HS.A.CED.A.2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
HS.A.REI.A.1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
HS.A.REI.D.11	Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

18 | P a g e 2017-2018

	Standards (continued)
HS.F.IF.B.4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
HS.F.IF.C.7e	Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
HS.F.IF.C.8b	Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^t$, $y = (0.97)^t$, $y = (1.01)12^t$, $y = (1.2)^t/10$, and classify them as representing exponential growth or decay.
HS.F.IF.C.9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
HS.F.BF.A.1a	Determine an explicit expression, a recursive process, or steps for calculation from a context.
HS.F.BF.B.3	Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, k $f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
HS.F.LE.A.1a	Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
HS.F.LE.A.1c	Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
HS.F.LE.A.2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

2017-2018 **19** | P a g e

Poudre School District

Chapter 7: Polynomial Equations and Factoring

9-10 days

HS.A.SSE.A.2, HS.A.SSE.B.3a, HS.A.APR.A.1, HS.A.APR.B.3, HS.A.REI.B.4b

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
7.1	Adding and Subtracting Polynomials	Learning	HS.A.APR.A.1	o.5 day
7.2	Multiplying Polynomials	Learning	HS.A.APR.A.1	1.5 days
7.4	Solving Polynomial Equations in Factored Form	Learning	HS.A.APR.B.3, HS.A.REI.B.4b	1 day
7.5	Factoring $x^2 + bx + c$	Learning	HS.A.SSE.A.2, HS.A.SSE.B.3a	1 day
7.6	Factoring $ax^2 + bx + c$	Learning	HS.A.SSE.A.2, HS.A.SSE.B.3a	1 day
7.3	Special Products of Polynomials	Learning	HS.A.APR.A.1	1 dov
7.7	Factoring Special Products	Learning	HS.A.SSE.A.2, HS.A.SSE.B.3a	1 day
7.8	Factoring Polynomials Completely	Learning	HS.A.SSE.A.2, HS.A.SSE.B.3a	1 day

Total: 7 days

Note: Additional days reserved for review and assessment.

2017-2018 20 | Page

Additional Activities/Resources		
Name	Location	
Algebra Tiles	Big Ideas Math: Dynamic Classroom: Tools	

Vocabulary			
binomial	closed	degree of a monomial	
degree of a polynomial	factored completely	factored form	
factoring by grouping	FOIL method	leading coefficient	
monomial	polynomial	repeated roots	
roots	standard form of a polynomial	trinomial	
Zero-Product Property			

	Standards
HS.A.SSE.A.2	Use the structure of an expression to identify ways to rewrite it. For example, see x^4 - y^4 as $(x^2)^2$ - $(y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.
HS.A.SSE.B.3a	Factor a quadratic expression to reveal the zeros of the function it defines.
HS.A.APR.A.1	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
HS.A.APR.B.3	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
HS.A.REI.B.4b	Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b .

2017-2018 **21** | P a g e

Poudre School District

Chapter 8: Graphing Quadratic Functions

8-9 days

HS.A.SSE.B.3a, HS.A.APR.B.3, HS.A.CED.A.2, HS.F.IF.B.4, HS.F.IF.B.6, HS.F.IF.C.7a, HS.F.IF.C.8a, HS.F.IF.C.9, HS.F.BF.A.1a, HS.F.BF.B.3, HS.F.LE.A.3

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
8.1	Graphing $f(x) = ax^2$	Learning	HS.A.CED.A.2, HS.F.IF.C.7a, HS.F.BF.B.3	o.5 day
8.2	Graphing $f(x) = ax^2 + c$	Learning	HS.A.CED.A.2, HS.F.IF.C.7a, HS.F.BF.B.3	o.5 day
8.3	Graphing $f(x) = ax^2 + bx + c$	Learning	HS.A.CED.A.2, HS.F.IF.C.7a, HS.F.IF.C.9	1.5 days
8.4	Graphing $f(x) = a(x - h)^2 + k$	Learning	HS.A.CED.A.2, HS.F.IF.B.4, HS.F.BF.A.1a, HS.F.BF.B.3	1 day
8.5	Using Intercept Form	Learning	HS.A.SSE.B.3a, HS.A.APR.B.3, HS.A.CED.A.2, HS.F.IF.B.4, HS.F.IF.C.8a, HS.F.BF.A.1a	1 day
8.6	Comparing Linear, Exponential, and Quadratic Functions	Learning	HS.F.IF.B.6, HS.F.BF.A.1a, HS.F.LE.A.3	1 day

Total: 5.5 days

Note: Additional days reserved for review and assessment.

2017-2018 22 | Page

Additional Activities/Resources		
Name	Location	

Vocabulary			
average rate of change	axis of symmetry	even function	
intercept form	maximum value	minimum value	
odd function	parabola	vertex form of a quadratic function	
vertex of a parabola	zero of a function		

	Standards		
HS.A.SSE.B.3a	Factor a quadratic expression to reveal the zeros of the function it defines.		
HS.A.APR.B.3	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.		
HS.A.CED.A.2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.		
HS.F.IF.B.4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.		
HS.F.IF.B.6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.		
HS.F.IF.C.7a	Graph linear and quadratic functions and show intercepts, maxima, and minima.		
HS.F.IF.C.8a	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.		
HS.F.IF.C.9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.		
HS.F.BF.A.1a	Determine an explicit expression, a recursive process, or steps for calculation from a context.		

2017-2018 **23** | P a g e

	Standards (continued)		
HS.F.BF.B.3	Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.		
HS.F.LE.A.3	Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.		

2017-2018 **24** | P a g e

Poudre School District

Chapter 9: Solving Quadratic Equations

7-8 days

HS.A.SSE.B.3b, HS.A.CED.A.1, HS.A.CED.A.4, HS.A.REI.B.4a, HS.A.REI.B.4b, HS.A.REI.C.7, HS.A.REI.D.11, HS.F.IF.C.7a, HS.F.IF.C.8a

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
9.2	Solving Quadratic Equations by Graphing	Learning	HS.A.REI.D.11, HS.F.IF.C.7a	1 day
9.3	Solving Quadratic Equations Using Square Roots	Learning	HS.A.CED.A.1, HS.A.CED.A.4, HS.A.REI.B.4b	o.5 day
9.4	Solving Quadratic Equations by Completing the Square	Learning	HS.A.SSE.B.3b, HS.A.CED.A.1, HS.A.REI.B.4a, HS.A.REI.B.4b, HS.F.IF.C.8a	1.5 days
9.5	Solving Quadratic Equations Using the Quadratic Formula	Learning	HS.A.CED.A.1, HS.A.REI.B.4a, HS.A.REI.B.4b	1 day
9.6	Solving Nonlinear Systems of Equations	Learning	HS.A.REI.C.7, HS.A.REI.D.11	1 day

Total: 5 days

Note: Additional days reserved for review and assessment.

2017-2018 25 | Page

Additional Activities/Resources		
Name	Location	
Form Matters	Big Ideas Math: Performance Tasks: Assessment Book Performance Task	

	Vocabulary	
completing the square	discriminant	quadratic equation
Quadratic Formula	quadratic function	system of nonlinear equations

	Chandonda
	Standards
HS.A.SSE.B.3b	Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
HS.A.CED.A.1	Create equations and inequalities in one variable and use them to solve problems. <i>Include equations arising from linear and quadratic functions, and simple rational and exponential functions.</i>
HS.A.CED.A.4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V = IR$ to highlight resistance R .
HS.A.REI.B.4a	Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form.
HS.A.REI.B.4b	Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b .
HS.A.REI.C.7	Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.
HS.A.REI.D.11	Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
HS.F.IF.C.7a	Graph linear and quadratic functions and show intercepts, maxima, and minima.
HS.F.IF.C.8a	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

2017-2018 **26** | P a g e

Poudre School District

Chapter 10: Radical Functions and Equations

Time Permitting

HS.A.CED.A.1, HS.A.CED.A.2, HS.F.IF.B.4, HS.F.IF.B.6, HS.F.IF.C.7b, HS.F.IF.C.9, HS.F.BF.4a

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
	Chapter Opener/Mathematical Practices			o.5 day
10.1	Graphing Square Root Functions	Learning	HS.A.CED.A.2, HS.F.IF.B.4, HS.F.IF.B.6, HS.F.IF.C.7b, HS.F.IF.C.9	1 day
10.2	Graphing Cube Root Functions	Learning	HS.A.CED.A.2, HS.F.IF.B.4, HS.F.IF.B.6, HS.F.IF.C.7b, HS.F.IF.C.9	o.5 day
10.3	Solving Radical Equations	Learning	HS.A.CED.A.1	1.5 days
10.4	Inverse of a Function	Learning	HS.F.BF.4a	1 day

Total: 4.5 days

Note: Additional days reserved for review and assessment.

2017-2018 27 | Page

Additional Activities/Resources			
Name Location			

	Vocabulary	
cube root function	inverse function	inverse relation
radical equation	radical function	square root function

	Standards		
HS.A.CED.A.1	Create equations and inequalities in one variable and use them to solve problems. <i>Include equations arising from linear and quadratic functions, and simple rational and exponential functions.</i>		
HS.A.CED.A.2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.		
HS.F.IF.B.4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.		
HS.F.IF.B.6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.		
HS.F.IF.C.7b	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.		
HS.F.IF.C.9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.		
HS.F.BF.4a	Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2x^3$ or $f(x) = (x+1)/(x-1)$ for $x \ne 1$.		

2017-2018 **28** | Page

Poudre School District

Chapter 11: Data Analysis and Displays

Time Permitting

HS.S.ID.A.1, HS.S.ID.A.2, HS.S.ID.A.3, HS.S.ID.B.5

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
	Chapter Opener/Mathematical Practices			o.5 day
11.1	Measures of Center and Variation	Learning	HS.S.ID.A.3	1 day
11.2	Box-and-Whisker Plots	Learning	HS.S.ID.A.1, HS.S.ID.A.3	1 day
11.3	Shapes of Distributions	Learning	HS.S.ID.A.1, HS.S.ID.A.2, HS.S.ID.A.3	0.5 day
11.4	Two-Way Tables	Learning	HS.S.ID.B.5	1.5 days
11.5	Choosing a Data Display	Learning	HS.S.ID.A.1	1 day

Total: 5.5 days

Note: Additional days reserved for review and assessment.

2017-2018 29 | Page

Additional Activities/Resources	
Name	Location

Vocabulary		
box-and-whisker plot	categorical data	conditional relative frequency
data transformation	five-number summary	interquartile range
joint frequency	joint relative frequency	marginal frequency
marginal relative frequency	mean	measure of center
measure of variation	median	misleading graph
mode	outlier	qualitative data
quantitative data	quartiles	range of a data set
standard deviation	two-way table	

Standards		
HS.S.ID.A.1	Represent data with plots on the real number line (dot plots, histograms, and box plots).	
HS.S.ID.A.2	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	
HS.S.ID.A.3	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	
HS.S.ID.B.5	Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	

30 | P a g e 2017-2018