Poudre School District Pacing Overview

Semester One

Chapter 1: Basics of Geometry and Chapter 2: Reasoning and Proofs

9-10 days

HS.G.CO.A.1, H.G.CO.C.9, HS.G.CO.C.10, HS.G.CO.C.11, HS.G.CO.D.12, HS.G.SRT.B.4, HS.G.GPE.B.7, HS.G.MG.A.1

Chapter 2: Reasoning and Proofs

6 days

HS.G.CO.C.9, HS.G.CO.C.10, HS.G.CO.C.11, HS.G.SRT.B.4

Chapter 3: Parallel and Perpendicular Lines

9-10 days

HS.G.CO.A.1, HS.G.CO.C.9, HS.G.CO.D.12, HS.G.GPE.B.5, HS.G.GPE.B.6

Chapter 4: Transformations

9-10 days

HS.G.CO.A.2, HS.G.CO.A.3, HS.G.CO.A.4, HS.G.CO.A.5, HS.G.CO.B.6, HS.G.SRT.A.1a, HS.G.SRT.A.1b, HS.G.MG.A.3

Chapter 5: Congruent Triangles

9-10 days

HS.G.CO.B.7, HS.G.CO.B.8, HS.G.CO.C.10, HS.G.CO.D.13, HS.G.MG.A.1, HS.G.MG.A.3

Poudre School District

Semester Two

Chapter 6: Relationships Within Triangles

8 days

HS.G.CO.C.9, HS.G.CO.C.10, HS.G.CO.D.12, HS.G.C.A.3, HS.G.MG.A.1, HS.G.MG.A.3

Chapter 7: Quadrilaterals and Other Polygons

7 days

HS.G.CO.C.11, HS.G.SRT.B.5, HS.G.MG.A.1, HS.G.MG.A.3

Chapter 4: Transformations, Chapter 8: Similarity, and Chapter 9: Right Triangles and Trigonometry

7 days

HS.G.CO.A.5, HS.G.SRT.A.2, HS.G.SRT.A.3, HS.G.SRT.B.4, HS.G.SRT.B.5, HS.G.GPE.B.5, HS.G.GPE.B.6, HS.G.MG.A.1, HS.G.MG.A.3

Chapter 9: Right Triangles and Trigonometry

8 days

HS.G.SRT.B.4, HS.G.SRT.C.6, HS.G.SRT.C.7, HS.G.SRT.C.8, HS.G.SRT.D.9, HS.G.SRT.D.10, HS.G.SRT.D.11, HS.G.MG.A.1, HS.G.MG.A.3

Chapter 11: Circumference, Area, and Volume

7 days

HS.G.CO.A.1, HS.G.C.B.5, HS.G.GMD.A.1, HS.G.GMD.A.2, HS.G.GMD.A.3, HS.G.MG.A.1, HS.G.MG.A.2, HS.G.MG.A.3

Poudre School District

Chapter 10: Circles

9 days

HS.G.CO.A.1, HS.G.CO.D.13, HS.G.C.A.1, HS.G.C.A.2, HS.G.C.A.3, HS.G.C.A.4, HS.G.GPE.A.1, HS.G.GPE.B.4, HS.G.MG.A.1, HS.G.MG.A.3

Chapter 12: Probability

Time Permitting

HS.A.APR.C.5, HS.S.CP.A.1, HS.S.CP.A.2, HS.S.CP.A.3, HS.S.CP.A.4, HS.S.CP.A.5, HS.S.CP.B.6, HS.S.CP.B.7, HS.S.CP.B.8, HS.S.CP.B.9

Review & Common Summative Assessment

Major Work of the Grade. Supporting Work of the Grade. Additional Work of the Grade.

Poudre School District

Chapter 1: Basics of Geometry and Chapter 2: Reasoning and Proofs

9-10 days

HS.G.CO.A.1, H.G.CO.C.9, HS.G.CO.C.10, HS.G.CO.C.11, HS.G.CO.D.12, HS.G.SRT.B.4, HS.G.GPE.B.7, HS.G.MG.A.1

Chapter Summary				
Section	ection Title Level of Learning		Pacing	
	Chapter Opener/Mathematical Practices			
1.1	Points, Lines, and Planes	Learning	HS.G.CO.A.1	1 day
2.3	Postulates and Diagrams	Preparing	HS.G.CO.C.9, HS.G.CO.C.10, HS.G.CO.C.11, HS.G.SRT.B.4	1 day
1.2	Measuring and Constructing Segments	Learning	HS.G.CO.A.1, HS.G.CO.D.12	1 day
1.3	Using Midpoint and Distance Formulas	Learning Preparing	HS.G.CO.D.12, HS.G.GPE.B.7	1 day
1.4	Perimeter and Area in the Coordinate Plane	Learning	HS.G.GPE.B.7, HS.G.MG.A.1	1 day
1.5	Measuring and Constructing Angles	Learning	HS.G.CO.A.1, HS.G.CO.D.12	1 day
1.6	Describing Pairs of Angles	Learning	HS.G.CO.A.1	1 day

Total: 7 days

Additional Activities/Resources		
Name Location		

Vocabulary				
acute angle	adjacent angles	angle		
angle bisector	axiom	between		
collinear points	complementary angles	congruent angles		
congruent segments	construction	coordinate		
coplanar points	defined terms	distance		
endpoints	exterior of an angle	interior of an angle		
intersection	line	line perpendicular to a plane		
line segment	linear pair	measure of an angle		
midpoint	obtuse angle	opposite rays		
plane	point	postulate		
ray	right angle	segment		
segment bisector	sides of an angle	straight angle		
supplementary angles	undefined terms	vertex of an angle		
vertical angles				

	Standards
HS.G.CO.A.1	Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
HS.G.CO.C.9	Prove theorems about lines and angles. <i>Theorems include: vertical angles and congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; point on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.</i>
HS.G.CO.C.10	Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
HS.G.CO.C.11	Prove theorems about parallelograms. <i>Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.</i>

	Standards (continued)			
HS.G.CO.D.12	Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). <i>Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.</i>			
HS.G.SRT.B.4	Prove theorems about triangles. <i>Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem provded using triangle similarity.</i>			
HS.G.GPE.B.7	Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.			
HS.G.MG.A.1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).			

Poudre School District

Chapter 2: Reasoning and Proofs

6 days

HS.G.CO.C.9, HS.G.CO.C.10, HS.G.CO.C.11, HS.G.SRT.B.4

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
	Chapter Opener/Mathematical Practices			
2.1	Conditional Statements	Preparing	HS.G.CO.C.9, HS.G.CO.C.10, HS.G.CO.C.11, HS.G.SRT.B.4	1 day
2.4	Algebraic Reasoning	Preparing	HS.G.CO.C.9, HS.G.CO.C.10, HS.G.CO.C.11, HS.G.SRT.B.4	1.5 days
2.5	Proving Statements about Segments and Angles	Learning	HS.G.CO.C.9	1.5 days
2.6	Proving Geometric Relationships	Learning	HS.G.CO.C.9	·

Total: 4 days

Additional Activities/Resources		
Name Location		

Vocabulary				
biconditional statement	conclusion	conditional statement		
contrapositive	converse	equivalent statements		
flowchart proof (flow proof)	hypothesis	if-then form		
inverse	negation	paragraph proof		
perpendicular lines	proof	theorem		
truth table	truth value	two column proof		

	Standards		
HS.G.CO.C.9	Prove theorems about lines and angles. <i>Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.</i>		
HS.G.CO.C.10	Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.		
HS.G.CO.C.11	Prove theorems about parallelograms. <i>Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.</i>		
HS.G.SRT.B.4	Prove theorems about triangles. <i>Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.</i>		

Poudre School District

Chapter 3: Parallel and Perpendicular Lines

9-10 days

HS.G.CO.A.1, HS.G.CO.C.9, HS.G.CO.D.12, HS.G.GPE.B.5, HS.G.GPE.B.6

Chapter Summary				
Section	ection Title Level of Learning Standard(s)		Pacing	
	Chapter Opener/Mathematical Practices			
3.1	Pairs of Lines and Angles	Learning	HS.G.CO.A.1	1 day
3.2	Parallel Lines and Transversals	Learning	HS.G.CO.C.9	2 days
3.3	Proofs and Parallel Lines	Learning	HS.G.CO.C.9, HS.G.CO.D.12	2 days
3.5	Equations of Parallel and Perpendicular Lines	Learning	HS.G.GPE.B.5, HS.G.GPE.B.6	2 days

Total: 7 days

Additional Activities/Resources				
Name Location				

Vocabulary				
alternate exterior angles	alternate interior angles	consecutive interior angles		
corresponding angles	directed line segment	parallel lines		
parallel planes	skew lines	transversal		

	Standards
HS.G.CO.A.1	Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
HS.G.CO.C.9	Prove theorems about lines and angles. <i>Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.</i>
HS.G.CO.D.12	Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). <i>Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.</i>
HS.G.GPE.B.5	Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
HS.G.GPE.B.6	Find the point on a directed line segment between two given points that partitions the segment in a given ratio.

Poudre School District

Chapter 4: Transformations

9-10 days

HS.G.CO.A.2, HS.G.CO.A.3, HS.G.CO.A.4, HS.G.CO.A.5, HS.G.CO.B.6, HS.G.SRT.A.1a, HS.G.SRT.A.1b, HS.G.MG.A.3

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
	Chapter Opener/Mathematical Practices			
4.1	Translations	Learning	HS.G.CO.A.2, HS.G.CO.A.4, HS.G.CO.A.5, HS.G.CO.B.6	1 day
4.2	Reflections	Learning	HS.G.CO.A.2, HS.G.CO.A.3, HS.G.CO.A.4, HS.G.CO.A.5, HS.G.CO.B.6, HS.G.MG.A.3	1 day
4.3	Rotations	Learning	HS.G.CO.A.2, HS.G.CO.A.3, HS.G.CO.A.4, HS.G.CO.A.5, HS.G.CO.B.6	1 day
4.4	Congruence and Transformations	Learning	HS.G.CO.A.5, HS.G.CO.B.6	1 day
4.5	Dilations	Learning	HS.G.CO.A.2, HS.G.SRT.A.1a, HS.G.SRT.A.1b	1 day

Total: 5 days

Note: Additional days reserved for technology exploration, review and assessment.

Additional Activities/Resources				
Name Location				

Vocabulary			
angle of rotation	center of dilation	center of rotation	
center of symmetry	component form	composition of transformations	
congruence transformation	congruent figures	dilation	
enlargement	glide reflection	horizontal component	
image	initial point	line of reflection	
line symmetry	line of symmetry	preimage	
reduction	reflection	rigid motion	
rotation	rotational symmetry	scale factor	
terminal point	transformation	translation	
vector	vertical component		

	Standards
HS.G.CO.A.2	Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
HS.G.CO.A.3	Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
HS.G.CO.A.4	Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
HS.G.CO.A.5	Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
HS.G.CO.B.6	Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
HS.G.SRT.A.1a	A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.

Standards (continued)		
HS.G.SRT.A.1b	The dilation of a line segment is longer or shorter in the ratio given by the scale factor.	
HS.G.MG.A.3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).	

Poudre School District

Chapter 5: Congruent Triangles

9-10 days

HS.G.CO.B.7, HS.G.CO.B.8, HS.G.CO.C.10, HS.G.CO.D.13, HS.G.MG.A.1, HS.G.MG.A.3

	Chapter Summary			
Section	Title	Level of Learning	Standard(s)	Pacing
	Chapter Opener/Mathematical Practices			
5.1	Angles of Triangles	Learning	HS.G.CO.C.10, HS.G.MG.A.1	1 day
5.2	Congruent Polygons	Learning	HS.G.CO.B.7	1 day
5.3	Proving Triangle Congruence by SAS <i>Include CPCTC</i>	Learning	HS.G.CO.B.8, HS.G.MG.A.1	1 day
5.5	Proving Triangle Congruence by SSS Include CPCTC	Learning	HS.G.CO.B.8, HS.G.MG.A.1, HS.G.MG.A.3	1 day
5.6	Proving Triangle Congruence by ASA and AAS <i>Include CPCTC</i>	Learning	HS.G.CO.B.8	1 day
5.4	Equilateral and Isosceles Triangles	Learning	HS.G.CO.C.10, HS.G.CO.D.13, HS.G.MG.A.1	1 day

Total: 7 days

Additional Activities/Resources Name

Vocabulary			
	Vocabulary		
base angles of an isosceles triangle	base of an isosceles triangle	corollary to a theorem	
corresponding parts	exterior angles	hypotenuse	
interior angles	legs of an isosceles triangle	legs of a right triangle	
vertex angle			

	Standards
HS.G.CO.B.7	Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
HS.G.CO.B.8	Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
HS.G.CO.C.10	Prove theorems about triangles. <i>Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.</i>
HS.G.CO.D.13	Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
HS.G.MG.A.1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
HS.G.MG.A.3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).

Poudre School District

Chapter 6: Relationships Within Triangles

8 days

HS.G.CO.C.9, HS.G.CO.C.10, HS.G.CO.D.12, HS.G.C.A.3, HS.G.MG.A.1, HS.G.MG.A.3

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
	Chapter Opener/Mathematical Practices			
6.1	Perpendicular and Angle Bisectors	Learning	HS.G.CO.C.9, HS.G.MG.A.1	2 days
6.2	Bisectors of Triangles	Learning	HS.G.CO.D.12, <mark>HS.G.C.A.3</mark> , HS.G.MG.A.1, HS.G.MG.A.3	1 day
6.3	Medians and Altitudes of Triangles	Learning	HS.G.CO.C.10	1 day
6.4	The Triangle Midsegment Theorem	Learning	HS.G.CO.C.10, HS.G.MG.A.1	0.5 day
6.5	Indirect Proof and Inequalities in One Triangle	Learning	HS.G.CO.C.10	1 day

Total: 5.5 days

Additional Activities/Resources					
Name Location					

Vocabulary			
altitude of a triangle	centroid	circumcenter	
concurrent	equidistant	incenter	
indirect proof	median of a triangle	midsegment of a triangle	
orthocenter	point of concurrency		

	Standards
HS.G.CO.C.9	Prove theorems about lines and angles. <i>Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.</i>
HS.G.CO.C.10	Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
HS.G.CO.D.12	Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). <i>Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.</i>
HS.G.C.A.3	Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
HS.G.MG.A.1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
HS.G.MG.A.3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).

Poudre School District

Chapter 7: Quadrilaterals and Other Polygons

7 days

HS.G.CO.C.11, HS.G.SRT.B.5, HS.G.MG.A.1, HS.G.MG.A.3

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
	Chapter Opener/Mathematical Practices			
7.1	Angles of Polygons	Preparing	HS.G.CO.C.11	1 day
7.2	Properties of Parallelograms	Learning	HS.G.CO.C.11, HS.G.SRT.B.5	1 day
7.3	Proving That a Quadrilateral is a Parallelogram	Learning	HS.G.CO.C.11, HS.G.SRT.B.5, HS.G.MG.A.1	1 day
7.4	Properties of Special Parallelograms	Learning	HS.G.CO.C.11, HS.G.SRT.B.5, HS.G.MG.A.1, HS.G.MG.A.3	1 day
7.5	Properties of Trapezoids and Kites	Learning	HS.G.SRT.B.5, HS.G.MG.A.1	1 day

Total: 5 days

Additional Activities/Resources				
Name Location				

Vocabulary				
base angles of a trapezoid	base of a trapezoid	diagonal		
equiangular polygon	equilateral polygon	isosceles trapezoid		
kite	legs of a trapezoid	midsegment of a trapezoid		
parallelogram	rectangle	regular polygon		
rhombus	square	trapezoid		

	Standards		
HS.G.CO.C.11	Prove theorems about parallelograms. <i>Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.</i>		
HS.G.SRT.B.5	Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.		
HS.G.MG.A.1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).		
HS.G.MG.A.3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).		

Poudre School District

Chapter 4: Transformations, Chapter 8: Similarity, and Chapter 9: Right Triangles and Trigonometry

7 days

HS.G.CO.A.5, HS.G.SRT.A.2, HS.G.SRT.A.3, HS.G.SRT.B.4, HS.G.SRT.B.5, HS.G.GPE.B.5, HS.G.GPE.B.6, HS.G.MG.A.1, HS.G.MG.A.3

	Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing	
	Char	oter 4: Trans	formations		
4.6	Similarity and Transformations	Learning	HS.G.CO.A.5, HS.G.SRT.A.2	0.5 day	
	C	hapter 8: Si	milarity		
	Chapter Opener/Mathematical Practices				
8.1	Similar Polygons	Learning	HS.G.SRT.A.2, HS.G.MG.A.3	1 day	
8.2	Proving Triangle Similarity by AA	Learning	HS.G.SRT.A.3, HS.G.SRT.B.5	0.5 day	
8.3	Proving Triangle Similarity by SSS and SAS	Learning	HS.G.SRT.B.4, HS.G.SRT.B.5, HS.G.GPE.B.5, HS.G.MG.A.1	0.5 day	
8.4	Proportionality Theorems	Learning	HS.G.SRT.B.4, HS.G.SRT.B.5, HS.G.GPE.B.6	1 day	
	Chapter 9: Ri	ight Triangle	s and Trigonometry		
9.3	Similar Right Triangles	Learning	HS.G.SRT.B.5	1 day	

Total: 4.5 days

Additional Activities/Resources				
Name Location				

Vocabulary		
geometric mean	similar figures	similarity transformation

	Standards
HS.G.CO.A.5	Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
HS.G.SRT.A.2	Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
HS.G.SRT.A.3	Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.
HS.G.SRT.B.4	Prove theorems about triangles. <i>Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.</i>
HS.G.SRT.B.5	Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
HS.G.GPE.B.5	Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
HS.G.GPE.B.6	Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
HS.G.MG.A.1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
HS.G.MG.A.3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).

Poudre School District

Chapter 9: Right Triangles and Trigonometry

8 days

HS.G.SRT.B.4, HS.G.SRT.C.6, HS.G.SRT.C.7, HS.G.SRT.C.8, HS.G.SRT.D.9, HS.G.SRT.D.10, HS.G.SRT.D.11, HS.G.MG.A.1, HS.G.MG.A.3

	Chapter Summary			
Section	Title	Level of Learning	Standard(s)	Pacing
	Chapter Opener/Mathematical Practices			
9.1	The Pythagorean Theorem	Learning	HS.G.SRT.B.4, HS.G.SRT.C.8	0.5 day
9.2	Special Right Triangles	Preparing	HS.G.SRT.C.8, HS.G.MG.A.1	1 day
9.4	The Tangent Ratio	Learning	HS.G.SRT.C.6, HS.G.SRT.C.8	0.5 day
9.5	The Sine and Cosine Ratios	Learning	HS.G.SRT.C.6, HS.G.SRT.C.7, HS.G.SRT.C.8	0.5 day
9.6	Solving Right Triangles	Learning	HS.G.SRT.C.8, HS.G.MG.A.1, HS.G.MG.A.3	1 day
9.7	Law of Sines and Law of Cosines	Learning	HS.G.SRT.D.9, HS.G.SRT.D.10, HS.G.SRT.D.11, HS.G.MG.A.3	1 day (time permitting)

Total: 5.5 days

Additional Activities/Resources				
Name Location				

Vocabulary			
angle of depression	angle of elevation	cosine	
inverse cosine	inverse sine	inverse tangent	
Law of Cosines	Law of Sines	Pythagorean triple	
sine	solve a right triangle	standard position	
tangent	trigonometric ratio		

	Standards			
HS.G.SRT.B.4	Prove theorems about triangles. <i>Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.</i>			
HS.G.SRT.C.6	Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.			
HS.G.SRT.C.7	Explain and use the relationship between the sine and cosine of complementary angles.			
HS.G.SRT.C.8	Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.			
HS.G.SRT.D.9	Derive the formula $A = 1/2 ab \sin(C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.			
HS.G.SRT.D.10	Prove the Laws of Sines and Cosines and use them to solve problems.			
HS.G.SRT.D.11	Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).			
HS.G.MG.A.1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).			
HS.G.MG.A.3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).			

Poudre School District

Chapter 11: Circumference, Area, and Volume

7 days

HS.G.CO.A.1, HS.G.C.B.5, HS.G.GMD.A.1, HS.G.GMD.A.2, HS.G.GMD.A.3, HS.G.MG.A.1, HS.G.MG.A.2, HS.G.MG.A.3

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
	Chapter Opener/Mathematical Practices			
11.1	Circumference and Arc Length	Learning	HS.G.GMD.A.1, HS.G.C.B.5, HS.G.CO.A.1	0.5 day
11.2	Areas of Circles and Sectors	Learning	HS.G.GMD.A.1, HS.G.MG.A.2, HS.G.C.B.5	0.5 day
11.3	Areas of Polygons	Preparing	HS.G.GMD.A.3	1 day
11.5	Volumes of Prisms and Cylinders	Learning	HS.G.GMD.A.1, HS.G.GMD.A.2, HS.G.GMD.A.3, HS.G.MG.A.1, HS.G.MG.A.2, HS.G.MG.A.3	0.5 day
11.6	Volumes of Pyramids	Learning	HS.G.GMD.A.1, HS.G.GMD.A.3, HS.G.MG.A.1	0.5 day
11.7	Surface Areas and Volumes of Cones	Learning	HS.G.GMD.A.1, HS.G.GMD.A.3	1 day
11.8	Surface Areas and Volumes of Spheres	Learning	HS.G.GMD.A.2, HS.G.GMD.A.3, HS.G.MG.A.1	1 day

Total: 5 days

Additional Activities/Resources		
Name	Location	

Vocabulary			
apothem of a regular polygon	arc length	Cavalieri's Principle	
center of a regular polygon	central angle of a regular polygon	chord of a sphere	
circumference	density	great circle	
lateral surface of a cone	net	population density	
radian	radius of a regular polygon	sector of a circle	
similar solids	volume		

	Standards
HS.G.CO.A.1	Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
HS.G.C.B.5	Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
HS.G.GMD.A.1	Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. <i>Use dissection arguments, Cavalieri's principle, and informal limit arguments.</i>
HS.G.GMD.A.2	Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.
HS.G.GMD.A.3	Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
HS.G.MG.A.1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
HS.G.MG.A.2	Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).
HS.G.MG.A.3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).

Poudre School District

Chapter 10: Circles

9 days

HS.G.CO.A.1, HS.G.CO.D.13, HS.G.C.A.1, HS.G.C.A.2, HS.G.C.A.3, HS.G.C.A.4, HS.G.GPE.A.1, HS.G.GPE.B.4, HS.G.MG.A.1, HS.G.MG.A.3

	Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing	
	Chapter Opener/Mathematical Practices				
10.1	Lines and Segments That Intersect Circles	Learning	HS.G.CO.A.1, HS.G.C.A.2, HS.G.C.A.4	1 day	
10.2	Finding Arc Measures	Learning	HS.G.C.A.1, HS.G.C.A.2	1 day	
10.3	Using Chords	Learning	HS.G.C.A.2, HS.G.MG.A.3	1 day	
10.4	Inscribed Angles and Polygons	Learning	HS.G.CO.D.13, <mark>HS.G.C.A.2</mark> , HS.G.C.A.3	1 day	
10.5	Angle Relationships in Circles	Learning	HS.G.C.A.2	1 day (skip)	
10.6	Segment Relationships in Circles	Learning	HS.G.C.A.2, HS.G.MG.A.1	1 day (skip)	
10.7	Circles in the Coordinate Plane	Learning	HS.G.GPE.A.1, HS.G.GPE.B.4	1 day	

Total: 7 days

Additional Activities/Resources		
Name	Location	

Vocabulary				
adjacent arcs	center of a circle	central angle of a circle		
chord of a circle	circle	circumscribed angle		
circumscribed circle	common tangent	concentric circles		
congruent arcs	congruent circles	diameter		
external segment	inscribed angle	inscribed polygon		
intercepted arc	major arc	measure of a major arc		
measure of a minor arc	minor arc	point of tangency		
radius of a circle	secant	secant segment		
segments of a chord	semicircle	similar arcs		
standard equation of a circle	subtend	tangent of a circle		
tangent circles	tangent segment			

	Standards		
HS.G.CO.A.1	Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.		
HS.G.CO.D.13	Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.		
HS.G.C.A.1	Prove that all circles are similar.		
HS.G.C.A.2	Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.		
HS.G.C.A.3	Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.		
HS.G.C.A.4	Construct a tangent line from a point outside a given circle to the circle.		
HS.G.GPE.A.1	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.		

	Standards (continued)
HS.G.GPE.B.4	Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point $(0, 2)$.
HS.G.MG.A.1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
HS.G.MG.A.3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).

Poudre School District

Chapter 12: Probability

Time Permitting

HS.A.APR.C.5, HS.S.CP.A.1, HS.S.CP.A.2, HS.S.CP.A.3, HS.S.CP.A.4, HS.S.CP.A.5, HS.S.CP.B.6, HS.S.CP.B.7, HS.S.CP.B.8, HS.S.CP.B.9

Chapter Summary				
Section	Title	Level of Learning	Standard(s)	Pacing
	Chapter Opener/Mathematical Practices			
12.1	Samples Spaces and Probability	Learning	HS.S.CP.A.1	0.5 day
12.2	Independent and Dependent Events	Learning	HS.S.CP.A.1, HS.S.CP.A.2, HS.S.CP.A.3, HS.S.CP.A.5, HS.S.CP.B.6, HS.S.CP.B.8	1 day
12.3	Two-Way Tables and Probability	Learning	HS.S.CP.A.4, HS.S.CP.A.5	1 day
12.4	Probability of Disjoint and Overlapping Events	Learning	HS.S.CP.A.1, HS.S.CP.B.7	0.5 day
12.5	Permutations and Combinations	Learning	HS.A.APR.C.5, HS.S.CP.B.9	1 day
12.6	Binomial Distributions	Learning	HS.S.CP.B.9	1 day

Total: 5 days

Additional Activities/Resources		
Name	Location	

Vocabulary

Standards	
HS.A.APR.C.5	Know and apply the Binomial Theorem for the expansion of $(x + y)^n$ in powers of <i>x</i> and <i>y</i> for a positive integer <i>n</i> , where <i>x</i> and <i>y</i> are any numbers, with coefficients determined for example by Pascal's Triangle.
HS.S.CP.A.1	Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").
HS.S.CP.A.2	Understand that two events <i>A</i> and <i>B</i> are independent if the probability of <i>A</i> and <i>B</i> occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
HS.S.CP.A.3	Understand the conditional probability of <i>A</i> given <i>B</i> as $P(A \text{ and } B)/P(B)$, and interpret independence of <i>A</i> and <i>B</i> as saying that the conditional probability of <i>A</i> given <i>B</i> is the same as the probability of <i>A</i> , and the conditional probability of <i>B</i> given <i>A</i> is the same as the probability of <i>B</i> .
HS.S.CP.A.4	Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. <i>For example, collect data from a</i> <i>random sample of students in your school on their favorite subject among</i> <i>math, science, and English. Estimate the probability that a randomly</i> <i>selected student from your school will favor science given that the student is</i> <i>in tenth grade. Do the same for other subjects and compare the results.</i>
HS.S.CP.A.5	Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. <i>For example,</i> <i>compare the chance of having lung cancer if you are a smoker with the</i> <i>chance of being a smoker if you have lung cancer.</i>
HS.S.CP.B.6	Find the conditional probability of <i>A</i> given <i>B</i> as the fraction of <i>B</i> 's outcomes that also belong to <i>A</i> , and interpret the answer in terms of the model.
HS.S.CP.B.7	Apply the Addition Rule, $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$, and interpret the answer in terms of the model.
HS.S.CP.B.8	Apply the general Multiplication Rule in a uniform probability model, $P(A and B) = P(A)P(B A) = P(B)P(A B)$, and interpret the answer in terms of the model.
HS.S.CP.B.9	Use permutations and combinations to compute probabilities of compound events and solve problems.